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The theory and practice of a solid-state electrochemical technique which allows measurement of the 
chemical diffusion coefficient and partial conductivities of the mobile species in a mixed ionic-electronic 
conductor, as well as the equilibrium partial thermodynamic quantities, are described. The theory 
incorporates nonideal thermodynamic behavior of the carriers as well as cross terms in the flux equations. 
Once the cell is assembled, all parameters can be measured as a function of composition without any 
further physical manipulation, so that the experiments are well suited to automatic control. 

1. Introduction 

With the successful development of solid 
electrolyte materials in recent years more 
emphasis in the field of solid-state elec- 
trochemistry is being directed toward the 
study of superionic conductors which are also 
good electronic conductors, have a wide 
range of stoichiometry for the mobile ion, 
and are thus of interest for use in batteries. 
These solid solution electrode (SSE) 
materials have been discussed in detail by 
Steele (I), Armand (2), and Whittingham 
(3). 

ing charge-discharge cycles; and the chem- 
ical or ambipolar diffusion coefficient fi, 
which places an upper limit on the current 
density obtainable from a given cell 
geometry. 

The most important parameters of SSEs 
for battery applications are the range of 
stoichiometry; the activity of the mobile ion 
as a function of composition, which governs 
the change in open-circuit emf of a cell dur- 

In order to better understand the materi- 
als, however, it is also desirable to be able to 
measure separately the two conductivities 
and their activation energies, while deter- 
minations of the partial entropy and enthalpy 
from the temperature variation of the cell 
emf can give useful information about the 
distribution of ions among sites of different 
energies (2,4, 5). 
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Alternating current conductivity has 
become the most widely used method for 
investigating the ionic conductivity of elec- 
trolytes. In the case of mixed ionic-electronic 
conductors, however, the ac technique yields 
only the total conductivity and dc measure- 
ments are normally required to identify the 
contributions of the different carriers to the 
total conductivity. Widely used dc tech- 
niques include the cell emf, Hebb-Wagner, 
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and Tubandt electrolysis arrangements, 
while for predominantly electronic conduc- 
tors pulse and galvanostatic methods are 
applicable, the ionic conductivity following 
from the measured chemical diffusion 
coefficient and a thermodynamic factor. 
These techniques have been reviewed by 
Wagner (6), and very recently by Weppner 
and Huggins (7). The technique described in 
this work, also mentioned in the above 
reviews, has been used considerably in stu- 
dies of silver and copper chalcogenides, for 
example, by Miyatani (g-.20), Rickert (II), 
Takahashi and Yamamoto (12), and recently 
by Dudley et al. for ternary potassium, 
lithium, and copper ion mixed conductors 
(4, 5, 13, 14). 

Although the main theoretical aspects of 
the technique have been treated by Yokota 
(15, Id) and Wagner (6,17) the present 
authors feel that all its potential have not 
been widely recognized, let alone exploited, 
and that it has much to offer as a precise 
technique for measuring the transport pro- 
perties of recently developed solid solution 
electrode materials. In this paper we have 
attempted to produce a completely general 
treatment of the technique, drawing on the 
ideas of Kimball (18), Wagner, and Yokota 
but extending and generalizing where possi- 
ble. It is shown, for instance, that both cross 
terms in the flux equations and ther- 
modynamic nonideality can be incorporated 
without great difficulty. In Section 2 we 
briefly describe the cell configurations used 
and the significance of the various probe 
voltages, while in Section 3 we cover first the 
theory of steady-state conditions and then 
describe time-dependent behavior. In the 
remaining sections the more practical aspects 
of the technique are covered. 

2. Principle of the Method 

Just as the errors due to nonohmic current 
contacts or contact resistance can be eli- 
minated in electronic conductivity 

measurements by the use of two additional 
voltage probes situated at a known distance 
apart on the sample, so the same principle 
can be employed in the case of ionic conduc- 
tors. The reason for the greater accuracy of 
four-point techniques can be seen from the 
equivalent circuit in Fig. la, where contact 
resistances are indicated by R, and R,. R, 
introduces errors in two-point measure- 
ments because the current flowing through 
produces a voltage drop between contacts 
and sample. On the other hand R,, although 
usually larger than R,, has no effect provided 
the voltage-measuring device draws negli- 
gible current. The ordinary electronic four- 
point arrangement is shown in Fig. lb. In the 
ionic case a means of converting an external 
electronic current into an ionic one is 
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FIG. 1. Types of four-point conductivity experi- 
ments. (a) Equivalent circuit showing contact resis- 
tances. (b) Electronic four-point arrangement. (c) Ionic 
four-point arrangement for electrolyte sample. (d) Ionic 
four-point arrangement for mixed conductor including 
both ionic and electronic probes. 
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required. Consider first a sample which is 
only ionically conducting (electrolyte). The 
ionic current can be provided by pieces of a 
mixed conductor which will be referred to as 
“reservoirs” and which conduct the same 
ions as the sample as well as electrons, as 
shown in Fig. lc. The ionic voltage probes 
are made from similar mixed-conductor 
material. In this case, however, equilibrium 
between the sample and probes is not 
perturbed by a net current and the elec- 
trochemical potential of the ions, PM+, in the 
sample adjacent to a probe is the same as that 
within the mixed conducting probe itself. 
Within the latter the electrochemical poten- 
tial of the ions is related to that of the elec- 
trons by equilibria such as 

M++e-=M. 

In terms of chemical potentials, this gives 

PM+ + @e- = @M. (2.1) 

which because of the equal and opposite 
charges of M+ and e- is the same as 

@MM+ + rz;e- = PM, (2.2) 

where the bars indicate electrochemical 
potentials. While no net charge is transferred 
between sample and probe, FM remains 
constant. 

A difference in electrochemical potential 
of ions in the bar between the probes there- 
fore produces an equal but opposite 
difference in electrochemical potential of 
electrons in the probes themselves and the 
voltage difference AVi measured between 
the ionic probes is given simply by 

AVi = -A/.&/F = +A/iM+/F. (2.3) 

Such experiments have been carried out, for 
example, on p-alumina (19) and 
Li14ZnGe4016 (20). Next consider a sample 
which is a mixed conductor. It is necessary to 
know whether the current flowing through is 
electronic or ionic. In the first case the 
ordinary electronic four-point arrangement 
can be used, employing inert metal contacts 

at the ends of the sample which are blocking 
to ions. The second case requires slices of 
electrolyte between sample and reservoirs to 
block passage of electrons or holes, as shown 
in Fig. Id. Two types of voltage probes can 
now be distinguished, and their responses 
derived from considering the free-energy 
change involved in the hypothetical case of 
transferring 1 Faraday of charge from one 
probe to the other. 

Electronic probes are made from an inert 
electronic conductor and are blocking to ions 
so that 

AVe = -U/F)((fie)~ -GeM. (2.4) 

Ionic probes, in order to be blocking to 
electrons, now must consist of an electrolyte 
in contact with the bar and a mixed conduc- 
tor “reference” material in contact with the 
electrolyte. Therefore, 

A vi = -(l/F)(Gi)d - (cZi)c)- (2.5) 

An additional important cell voltage (E) is 
defined between ionic and electronic probes 
when the bar is in equilibrium. It can be seen 
that 

E = -k{(fie)b + @i)d -(pM)ref} (2.6) 

The second expression shows that E is the 
emf of a concentration cell in metal M and if 
PM ref is known the formal activity of metal in 
the sample is obtained: (This is equivalent to 
the “atomic probe” described by Ohachi and 
Taniguchi (21).) Changes in E correspond to 
the open circuit voltage variations expected 
if the sample material were to be used as a 
battery electrode. A further important 
difference occurs when the sample is a mixed 
conductor. For solely electronic or ionically 
conducting samples when the current is 
switched on the voltage probes respond 
immediately giving a steady voltage. In the 
mixed-conductor case this is not so; both 
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types of probes give voltages that change 
with time, eventually reaching a steady state. 
As will be shown later this is due to a 
diffusion process. 

3. Phenomenologfcal Theory of Transport 
in Mixed Conductors 

(a) Initial and Steady-State Conditions 

We consider a typical solid solution elec- 
trode material where there is one mobile 
ionic species and electrons or holes (i.e., one 
type completely dominant), moving through 
a lattice which is fixed as the frame of 
reference. Considering these three consti- 
tuents the usual flux equations for one- 
dimensional transport along the z axis can be 
written, including cross terms, as 

J1 = L11 dfilldz + LIZ d&/dz 

+ ~513 diGI& (3.1) 

Jz = Lz1 d&/dz + Lzz dfiz/dz 

+ L-23 dhldz, (3.2) 

J3 = L31 d/Zlldz + L32 d/&/d2 

+ L33 d&/dz. (3.3) 

Each molar flux is thus assumed to be linearly 
proportional to the gradients of chemical 
potential via the Onsager L coefficients. 
Species 3 will be identified with the “frame- 
work” part of the structure, and to make it 
the reference frame requires J3 = 0 (Eq. 
(3.3)). The electrochemical potential 
gradients of the three species are also related 
by the Gibbs-Duhem equation giving (22) 

cl dfilldz + c2 d/.izldz + c3 d@sldz = 0. 
(3.4) 

Combining Eqs. (3.3) and (3.4), one obtains 

0531 - w533lc3) &ldz 
+(L32 - &33/c3) dfiz/dz = 0. (3.5) 

Table I shows some examples of how actual 
mixed conductors might be treated. 

TABLE I 

Species 

Compound 1 2 3 

Kl+xFel1017 (1 +x)K+ xe- (Fedh7)- 
Agz-*Te (2 -x) Ag+ xh’ Te*- 

Li,TiSz xLi+ (x+n)e- (TiSd “f 

Species 1,2, and 3 are not thermodynamic 
components of the systems in the normal 
phase rule sense; in fact the examples are 
binary or pseudobinary. However, the flux 
equations are valid not only for conditions of 
local charge neutrality but also where space 
charges are present. If the requirement of 
local charge neutrality is not considered, 
therefore, the three species can be regarded 
as components and the assumption can be 
made that any two of the three electro- 
chemical potential gradients can be regarded 
as independent. Each of the terms in 
brackets in (3.5) must therefore be equal to 
zero. Moreover, it is also reasonable to 
assume that L33 is zero since it contains the 
absolute mobility of the framework. The 
cross terms L31 and L32 are thus zero and, 
with the Onsager reciprocal relations ap- 
plied, the flux equations reduce to the usual 
form for two mobile species (I 7): 

JI = Lt1 d/.-il/dz +L12 d&/dz, (3.6) 

J2 = L12 d&/dz f L22 dfizldz. (3.7) 

It is important to point out, however that 
Eqs. (3.6) and (3.7) are now already compa- 
tible with the Gibbs-Duhem equation, yet no 
restrictions relating d@l/dz and d&ldz 
have resulted. If, on the other hand, the 
framework is not considered and the Gibbs- 
Helmholtz equation is combined with just 
the flux equations pertaining to mobile spe- 
cies (i.e., Eqs. (3.6) and (3.7)) inconsistencies 
result except in the case of zero fluxes (22). 

In the flux equations we have not explicitly 
included other species which may be present, 
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such as metal atoms arising from the equili- 
brium: 

M++e-*h4. 

Such effects can be regarded as extreme cases 
of interactions between species which are 
allowed for by nonzero cross coefficients and 
the thermodynamic factors (to be considered 
later). 

The L coefficients are defined by (17) 

Lij = -CiBije (3.8) FIG. 2. Behavior of voltage probes reversible to spe- 

The electrochemical potential gradients can 
ties 1 and 2 on switching on and off a current of species 1. 

be split up into their chemical and elec- 
The current is on at to and off at fl. 

trostatic components: 

dfii/dz = dpi/dz +zlFdq/dz. (3.9) switched on the sample is at equilibrium and 
within the bar (except at the surfaces) no 

cp is the local electrostatic potential averaged gradients of chemical potential exist. At to, a 
over a region of space which is large constant current II of species 1 is switched 
compared to atomic dimensions, but small on. Both species 1 and 2 begin to migrate in 
compared to the dimensions of the sample, as the electric field and before any chemical 
discussed by Wagner (17). Conductivity potential gradients have had time to be set up 
coefficients mii can then be defined as one obtains from Eqs. (3.11) and (3.12) 

uij = -LiiziziF* (3.10) II = zlFJl+ zzFJz 

and the flux equations can thus be rewritten = -(u11 +u22+2un) dq/dz. 
(3.13) 

The effective conductivity is thus the total 
conductivity, denoted go, and the same 

, (3.11) quantity as that obtained by high-frequency 
ac measurements. The electrochemical 

(3.12) 

These are to be preferred since simple 
combinations of vii are experimentally 
measurable quantities. We will now show 
how this comes about by reference to eight- 
point bar conductivity experiments. The 
relations are the same as those derived by 
Kimball (18) and Wagner (I 7). 

Figure 2 shows the characteristic response 
of ionic and electronic voltage probes during 
a typical experiment. Before the current is 

potential gradients of species 1 and 2 are 
given by 

and since drpfdz is constant with z, the first 
two expressions can be identified with the 
measured probe voltage differences, divided 
by the.probe spacing, AZ. Thus 

AVl=AV2=-AzI1/uo=X (in Fig. 2). 

(3.15) 

At later times the motion of species 2 
becomes blocked since it is unable to enter or 
leave the ends of the bar and eventually 
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JZ = 0 everywhere. Eliminating d,&/dz 
between the flux equations one obtains 

II = z,FJl 

= -A ${u,, +&/u22}. (3.16) 1 
The term in brackets is the partial conduc- 
tivity of species 1, denoted a; by Wagner 
(17). Now gradients of composition occur 
along the sample and aii are in general 
themselves functions of composition. In 
order to derive useful relations we impose 
the restriction that the range of composition 
encountered along the bar specimen be small 
enough for aij values to be taken as 
constants. As will be seen in Section 5 this is 
quite readily achievable experimentally. We 
can thus write 

AVI = -AZIIU~Z/(UIIU~~ -CT:,>) 

=Y (in Fig. 2). (3.17) 

Similarly, for the blocked species (species 2), 
one obtains 

AV2= +dzIl(~12/(~11(+22-~:2) 

= 2 (in Fig. 2). (3.18) 

In the case of zero cross coefficients AV2 
returns to zero. Rewriting (3.16): 

d&fdz = -11Fz1~11/(~11~22-~:2). (3.19) 

This must contain a field gradient term which 
will be reduced by zlFll/ao when at rl, the 
current I is switched off. Thus immediately 
after switching off, 

Hence A VI falls by the same increment X as 
that at the initial current switch-on. A V2 does 
the same (Fig. 1). Finally at infinite time after 
switching off the bar returns to its equili- 
brium starting condition. Note that there will 
have been no change in bulk composition. 

Simple algebra gives the following relations 
for the aij values as a function of the experi- 
mental quantities X, Y, and Z: 

Z2(X- Y) 1 
ull =xY(Y -Z)2 

--. 
Y’ 

(3.21) 

(3.22) 

Z(X - Y) 
fl12= -x(y-z)2’ (3.23) 

Similarly for the transport numbers: 

t1= (X-Z)/(Y -Z); (3.24) 

t2=-(X-Y)/(Y-Z). (3.25) 

(b) Voltage Probe Behaviour between the 
Initial and Steady-State Times 

The Controlling Transport Process 

As seen above it is possible to explain the 
probe voltages under certain specific condi- 
tions’just using the flux equations and simple 
statements about individual fluxes or chem- 
ical potential gradients. In the general case, 
however, it is necessary to solve for the local 
field dq/dr as a function of the concen- 
trations c; of the species present. This 
normally has to be done numerically, and 
algorithms have been derived, for example 
by Sandifer and Buck (23). Such numerical 
solutions show, however, that when the 
concentration of mobile charged species is 
high, a condition of local charge neutrality 
holds everywhere except, typically, within 
about lo3 A of the interface. Transport 
within space charge regions has been dis- 
cussed thoroughly by Fromhold (24). In the 
present work samples of millimeter dimen- 
sions are considered, and it is thus possible to 
simplify the problem greatly and obtain ac- 
curate analytical solutions for the transport 
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process by making the assumption that 
local charge neutrality holds everywhere, 
provided one does not attempt to calculate 
the field and concentrations of species in 
space charge regions. In four-point conduc- 
tivity experiments this is not required, since 
all that has to be known about the interface 
between the sample bar and its current 
contacts is the current density and the species 
involved. Space charges must also exist at the 
interfaces between the bar and the voltage 
probes. However, there is no net flux 
perpendicular to the z-direction, so chemical 
equilibrium is maintained across these inter- 
faces and Eqs. (2.4)-(2.7) remain valid. 

Ambipolar Diffusion 

The condition of local charge neutrality 
implies that a current of one charged species 
must be counterbalanced by an opposite 
current of another species. This coupled 
motion is described by a single “ambipolar” 
or “chemical” diffusion coefficient 6, 
defined by 

Jl J2 fi=--=----- 
dcl/dz dc;?/dz * 

(3.26) 

For a pure diffusion process, therefore, 
zlJl + z2J2 = 0. Combining this with the flux 
equations and eliminating dq/dz one obtains 

Jlzl = -J2z2 = - 
bl1(+2242) 

F2Vo 

I 
(3.27) 

It is now necessary to relate dpi/dz to dci/dz 
in order that (3.27) can be written in the form 
of Fick’s first law. 

To keep the treatment valid for cases 
where the components are thermodynamic- 
ally nonideal it is necessary to consider the 
chemical potential of each component to be 
affected not only by its own concentration 
but by those of other components also. This 
was recently pointed out by Heyne (25). 

Thus for the case under consideration one 
must write 

c1,c3 

(3.28) 

and similarly for the other components. The 
third term vanishes since c3 is a constant. 
Furthermore because of local charge neu- 
trality 

ZI dcl/dz + z2 dc2/dz = 0, (3.29) 

and Eq. (3.28) becomes 

Putting de2 = -zl dc1/z2 in the second term, 

(3.30) 

The first partial differential in brackets thus 
refers to the contribution to dpl from 
changes in cl and the second to the contribu- 
tion from changes in c2. Because of the local 
charge neutrality condition, therefore, it is 
possible to replace the brackets by the 
complete differential dpl/del and thence to 
replace this by the usual expression involving 
activities: 

dpl dcl RTdlnal -c-.-p 
dz dz cl dlncr’ 

(3.31) 

We have dealt with this section in detail so 
as to show that the final thermodynamic 
expression d In al/d In cl henceforth shor- 
tened to WI, can in fact contain any ther- 
modynamic dependence of pl on ~2, c3 and 
as such is quite general. Equation (3.27) can 
now be rewritten 

Jlzl = - J2z2 = - 
RTbmr& 

F2CQ 

WI dcl ~2 dc2 ----- 

zlcl dz z2c2 dz I ’ 
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Alternatively in terms of the stoichiometric 
coefficient x of species 1, 

J _ 
1 

b11~22-d2) 
(70 

RT WI ~2 dcl 
.--T F ( z:c1+z:c:, dz’ 1 

where M is the crystal weight and p the 
density of the solid. It is therefore possible to 
calculate d from experimentally measurable 

from which the ambipolar diffusion 
coefficient fi can be recognized as 

quantities. In the next section it will be seen 
that d can also be calculated from the time 

((~11~22-(~:2) RT WI w2 
- -y--+ 

( 

constant of the time-dependent probe 
fi=- 

F zlcl 
2 

CO 7-zca 1. 

voltage variations, thus making possible an 
experimental test of self-consistency of the 

(3.32) theory. 

This important relation, derived by Wagner Probe Voltage “Transients” 

and Kimball, shows how d is related to the It is necessary to solve the diffusion equa- 
conductivity terms and a thermodynamic tion 
factor. It will be shown next that, like the 
conductivities, this thermodynamic quantity 

dcl/dt = - dJl/dz, (3.36) 

in brackets is also experimentally measur- where J1 is given by 
able. We will abbreviate it by Was suggested 
by Weppner and Huggins (7). 

When the sample is in equilibrium it was 
J1 = -&$+II(~;~;+‘). (3.37) 

shown that an open-circuit cell voltage E The first term is the contribution from 
could be measured, given by diffusion, while the second represents the 

E = -(ZZ/Q - zl/.42)lF. (3.33) 
external current of species 1. Provided uij 
values are not z-dependent the second term 

Here we include the zi terms for generality. 
is a constant and only affects the boundary 

As the composition of the sample can be 
conditions. Assuming also D (and hence w1 

varied by coulometric titration it is possible 
and WZ) is independent of z then a general 

to measure the change in cell emf with 
solution to the equation is given by (26) 

composition, say with cl. Thus one obtains 
cl = f (A,,, sin h,z + B, cos A,z) 

dE 1 
m=l 

-=-- 
dcl F I . exp(-A2,Dt). 

With (3.29)-(3.32) this becomes 
Yokota (16) solved this for the case where 
g12 = 0. In the present work we have retained 
the cross coefficients and obtain by analogy 
with Yokota’s treatment the following: 

(3.34) 
Switching on current Ii at t = 0, 

Hence Eq. (3.32) can be replaced by c1=cy- 
FI1Lb22 + (~12) 

zda11~2242)R77+ 

fi= b11(+22-~42) dE 
3 

Zztico 
7. 
dcl 

. [;-;+@[;,f]], (3.38) 
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where cy is the initial value of cl, L is the bar 
length, and the function @ is given by 

@ ;,f =A [ 1 7r’~L(2nl:l)2 

- exp 
[ 

-(~PI+~)~L 
7 1 [ cos (2m+l)y 1 . 

(3.39) 

T is given by 

7 = L2/T21j. (3.40) 

Similarly, on switching off current 11, after 
the steady state has been reached, 

c1=cy+ 
muLT22 + a12) 

2lb11~22-62)~7w 

It is now necessary to convert the concen- 
tration changes back into electrochemical 
potential variations to which the observed 
probe voltages are related. First one can 
equate the diffusion and flux equation 
expressions for the flux of species 1: 

J 
1 

= -p1 I1b11+ m2) 

dz+ FZlUO 

~11 d& 
=-22 -.-L+ !!!.5. (3.42) 

zlF dz 2122F dz 

Similarly for species 2: 

J 
2 

= _ &2 + Ilb22 + a121 

dz F.2~0 

~22 d& ~12 dcZ1 = 

-m dz --7- 
ZIZZF dz * 

(3.43) 

Eliminating d&/dz from Eqs. (3.42) and 
(3.43) and replacing d by the right-hand side 
of Eq. (3.32), one obtains 

The two voltage probes are at z = z’ and 
z = z”; thus 

i&r”) -CZw 

2” 

= 4-h 

J dzdz 
2’ 

2 b22 + m2) 
= RTWZ 1 

UO 

2” 

- J $dz- 
(z”- z’)IlzlF 

go - 
(3.45) 

z’ 

Combining Eqs. (3.45) and (3.38): 

A& = A VlZlF = - 
z1(u22+ a12)2F&L 

~ohU22 - 42) 

Ilz~F(z”-z’) - 
co * 

(3.46) 

Corresponding expressions can be obtained 
for switching off the current and for species 2. 
If the probes are disposed symmetrically on 
either side of the center of the bar, distance 
AZ apart, then &d’=L-z’. Noting 
that @[z/L, t/7] = -@[(L - z)/L, t/7] the 
following relations result for the probe 
voltages: 

Switching on II: 

A Vl = _ 11u22Az 
bw22 - 42) 

+ 211Lb22 + u12J2 

~OblP22 - &2 1 

. +g, j, (3.47) 

AV2= 
I1u12 AZ 

bllU22 - d2) 

21lLb22 + u12h1+ u12) - 

u0b11(+2242) 

. @[F,j. (3.48) 
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Switching off Ii: 

dVl = _ Gw(+22+m~2 @[L$, “I, 
~oha*2-&2) 7 

(3.49) 

A v 
2 

= + IJJ5b22 + ~12k11+ g12) 

a1*u22+ &2 

. @[F,;]. (3.50) 

At t = 0, @[(L - Az)/2L, 0] = AZ/~, and 
(3.47) and (3.48) reduce to Eq. (3.15). At 
t = 00, @[(L -Az)/2L, co] = 0, giving Eqs. 
(3.17) and (3.18). When u12 = 0 the expres- 
sions reduce to those previously reported 
(4,Id). All transients thus have the same 
characteristic time 7 which can be obtained 
experimentally, noting that the function @ 
can be approximated by 

@[y,t]-$exp(-i) 

. cos 4L --AZ) 
2L 

(3.51) 

for t/T > 0.5 (16). 
Within this limit the behavior of both sets 

of probes on switching on and off can be 
described by 

lAV,-AVm(=a exp[-t/T], (3.52) 

where (Y is a constant for a particular probe 
geometry. Thus writing V for IA V, - AV,j 
one obtains 

In V = const - t/T. (3.53) 

T can thus be obtained from the slope of a 
graph of In V against t (4). Using a least- 
squares regression it is normal to minimize 
the quantity (6 In V)2. However, S In V = 
SV/ V and the experimental errors in V are 
expected to be largely independent of V We 
therefore use a weighted regression which 
minimizes the quantity (SVln V)2. 7 is 

consequently given by 

(Z Vt)’ -I; v * Z( VQ2 
‘=ZV. Z(Vt In V)-CVtZVln V’ 

(3.54) 

To comply with the restriction t/r > 0.5 one 
makes use of the following relation derived 
from any one of Eqs. (3.47)-(3.50): 

A Vt(lim) - A Vce 
AVo-AV, 

-, 0.5 =lim. (3.55) 1 
Only results for which (A V, -A V,)/(A VO - 
AV,)<lim are used in the summations of 
Eq. (3.54). 

4. Experimental Techniques 

In Sections 2 and 3 the advantage of 
four-point over two-point conductivity 
measurements was shown to be the elimina- 
tion of errors due to resistance at the current 
contacts as well as those due to deviations 
from local charge neutrality in these regions. 
In the case of ionic currents these contacts 
are formed between a mixed conductor and 
an electrolyte. The origins of contact resis- 
tance between ionic conductors are as yet 
poorly understood, and since in general the 
two crystal structures involved are unrelated 
to each other, it is not an easy subject to treat 
theoretically, even when single crystals are 
involved. However, it is obvious that the two 
surfaces must be free from nonconducting 
contaminants and in as intimate contact with 
one another as possible. If one of the phases 
is relatively soft this can be achieved by 
application of small-to-moderate pressures. 
This is the case with most silver and copper 
conductors that have been studied, and it is 
not coincidence that these materials have 
been the subject of the majority of studies 
involving four-point measurements. Inter- 
faces between Cu,Mo& or Cu2-,S and the 
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mver ion-conducting electrolyte 1,4- 
dimethyl-1,4-diazabicyclo(2,2,2)octane di- 
bromide-CuBr (subsequently abbreviated 
by T) were made, for example, simply by 
pressing together polycrystalline pellets and 
found to exhibit very little contact resistance 
(14,27). On the other hand, in a study of 
KlcxFel1017, a hard polycrystalline ceramic 
which had to be connected to the hard elec- 
trolyte K-P-alumina, dry pressed contacts 
were found to be unsatisfactory even if the 
surfaces had been polished, and use had to be 
made of a trace of molten KN03 to promote 
ionic contact (4). All good iithium and 
sodium electrolytes so far developed are 
similarly hard materials, and the same 
difficulty is expected unless the sample itself 
is soft. This is the case, for example, with 
transition metal dichalcogenides and satis- 
factory ionic contacts between the phases 
LiXTiS2/Li4S04-Li3P04 (27) have been 
made. Recently developed thin polymer 
electrolytes (28) for all the alkali metals 
promise to be of great value when sand- 
wiched between hard materials, for 
temperatures below 200°C. 

Ionic Voltage Probes 

Here the interface requirements are much 
less severe since only very small currents are 
allowed to flow. Because of the requirement 
of forming fairly sharp points, hard elec- 
trolytes are to be preferred here. The 
reference material can be pressed against the 
electrolyte, e.g., LisPOh-Li4Si04/LisFeOs, 
Cu/T although in the second case better 
voltage stability was obtained when the elec- 
trolyte was first coated with vacuum- 
evaporated copper. In the special case of 
KGa11017/K1.6Ga5.5Fe5.5017 it was possible 
to form the interface by a hot pressing tech- 
nique (4). The main contribution to the 
probe resistances comes from the point 
contact with the sample. Nevertheless, 
probably because of the very high local pres- 
sures at the probe tip, probe impedances 
have generally been low enough for the use 

of a conventional lOlo-0 input impedance 
digital voltmeter even in the case of contacts 
between two hard materials. The inert 
metal/mixed-conductor contacts can usually 
be made simply by pressing a metal foil into 
the sample, though previous vacuum 
deposition of gold is to be preferred. 

Experimental Jigs 

The main practical difficulty in using four- 
point ionic techniques arises from the need to 
make numerous contacts all under pressure 
and that will be stable at moderate temperaA 
tures, and not affected by temperature 
changes. This difficulty is increased in study- 
ing mixed conductors by the need to employ 
bar samples of short lengths to minimize the 
time taken between switching on a current 
and reaching the steady state. In practice this 
time is about 87 and from Eq. (3.40) is 
proportional to the square of the bar length. 
For D = 1 x lop6 to 1 x 10e5, typical values 
for good SSEs, a bar of length of 5 mm 
requires times between 6 and 60 hr. 

The arrangement used by the present 
authors is shown in Fig. 3. A stainless-steel 
G-clamp holds together the sample, elec- 
trolyte slices, reservoirs, and electronic 
contacts, using alumina spacers as insulators 
where necessary. A nut is screwed onto 
the threaded part of the G-clamp to keep 
the jaws open during assembly. When the 

FIG. 3. Experimental jig for carrying out six-poiot 
or eight-point conductivity experiments on mixed 
conductors. 
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components are in place the nut is removed, 
leaving the cell clamped by the tungsten 
compression spring. This assembly is then 
laid on the alumina baseplate which holds the 
two sets of voltage probes, the ionic probes 
being fixed while the electronic probes are 
sprung by tungsten tension springs. Tungsten 
has been found satisfactory up to 700 K and 
the springs can be formed simply by wrap- 
ping 0.25 to OS-mm-diameter wire around 
the thread of a small bolt. 

To make assembly easier the contacts from 
the cell are wrapped around a Pt/lO% Rh 
square section contact post using a wire- 
wrapping tool and these in turn are wire- 
wrapped to a second set of contacts carried 
on an alumina baseplate and permanently 
connected through a horizontal support tube 
to the outside of the apparatus. The whole 
assembly sits inside a glass tube in which the 
atmosphere can be controlled, and which if 
necessary can be assembled and sealed 
within a glove manipulator box. 

Bar Shape and Probe Positioning 

In principle the voltage probes may be 
placed any distance apart between the cur- 
rent contacts. Although a large spacing 
produces higher voltages to measure for a 
given current through the bar, two other 
factors indicate advantages in having the 
ratio r/L fairly small (we will assume always 
that the probes are place symmetrically on 
either side of the midpoint of the bar side). 
The first is the shape of the voltage tran- 
sients. Immediately after the current is swit- 
ched on or off, composition changes begin to 
take place from the ends of the bar. Thus 
probes placed near the current contacts 
respond rapidly, whereas probes nearer the 
center show a delay before the voltage 
changes from the value at switch on/off. It is 
easier in the second case, therefore, to 
measure the voltage X (Fig. 2). 

The second factor concerns errors due to 
imperfect current contacts at the ends of the 
bar. The theory assumes a uniform current 

density along the bar, but in practice this may 
not be achieved. In order to investigate the 
errors produced in the steady-state probe 
voltages a worst-case model was chosen 
where the current contacts were restricted to 
small regions in the corners of the ends of the 
bar as shown in Fig. 4. The bar was divided 
into a set of 5 x 5 x 15 boxes, and Fick’s 
second law for the diffusion of particles in the 
boxes was solved numerically with a simple 
computer program. The currents were simu- 
lated by adding particles at a constant rate to 
the box at one corner and removing the same 
number at the other corner. After sufficient 
iterations a time-invariant state was reached. 
Comparing the concentrations in boxes 
along the middle of the sides of the bar with 
those expected for ideal current contacts, 
and assuming a proportionality between 
voltage and composition, we calculated the 
errors involved; they are shown in Fig. 4 for 
two bars of square cross section but different 
width/length ratios, as a function of the 
probe spacing/bar length ratio. Again it can 
be seen that the errors are significantly 
reduced for probes close together. As would 
also be expected the errors fall rapidly with 
decreasing bar width/bar length ratio. We 
find therefore that the optimum probe 
spacing is about one-third of the bar length 
and that the bar should have as small a cross 
section as is practicable. 

Diffusion coefficients were also calculated 
from the computer simulations of the tran- 
sients. Unlike the conductivities they were 
very insensitive too nonideal current 
contacts and values for d/L = 0.29 were 
within 0.2% of the ideal value in all cases. 
The assumption was made, of course, that 
the material was an isotropic conductor. 
When this is not so, much larger errors can 
result. The tolerance of this technique to 
nonuniform current contacts has enabled 
eight-point experiments to be carried out 
where both ionic and electronic current 
contacts are provided at the ends of the bar 
(4). 
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FIG. 4.; Errors in steady-state probe voltages when 
current contacts are not uniform. 

5. Expdmentil Tests of the Theory 

Yok0t.a (16y showed that the transients 
observ$l with..Agi.gaTe agreed with values 
calculated from Eqs. (3.46) to (3.49) with 
u12 =,O;..Equation (3.35) allows a check of 
interna&msisqncy to be made, by compar- 
ing B!calculat&l from the transients (via T) 
with that :obtPined from the steady-state 
conductitities ~11, r22 (and gi2) and the 
slope of’ the ‘coulometric titration curve. 
Agreement between these values was within 
10% in the caseof Ag 1.93Te. Similar tests for 
the phase Ki+&ii0r7 were also in reason- 
able agreement with theory, considering the 
greater experimental difficulties (4). This 
system was of particular interest since the 
two component conductivities aZ and a: 
were of comparable magnitude and either 
could be made to dominate depending on the 

composition. Good agreement was also 
obtained for the phase CuXMo&s, which is a 
metallic conductor (5). Miyatani (9) investi- 
gated the effect of varying the bar length and 
verified that T - L2. The theory has thus been 
quite well verified experimentally. 

It is interesting that the cross terms Lii or 
uii have been found to be negligible or at 
least very small compared to the main term 
for the species with the lower conductivity 
for all systems so far studied. 

6. Comparison of the Technique with 
Others 

The other-most widely used techniques for 
measuring D in mixed conductors involve 
the imposition of voltages, constant currents, 
or current pulses across an interface between 
the sample and a suitable electrolyte. With 
solid electrolytes difficulties result because of 
the requirement of uniform contact and well 
defined interfacial area. 

The main practical advantage of the 
polarization method is that it relaxes this 
requirement considerably, allowing com- 
pletely solid state arrangements to be used 
and hence wider temperature and metal 
activity ranges can often be covered. Because 
of the rather longer diffusion path, however, 
the method is restricted in practice to 
m_aterials with high diffusion coefficients 
(D > 5 x lo-’ cm2sec-l), whereas pulse and 
galvanostatic methods allow much smaller 
diffusion coefficients to be measured, 
although account must be taken of the effects 
of double-layer charging at relatively short 
times. Also, in the galvanostatic and pulse 
methods it is only possible to derive ai from 
B and the thermodynamic factor when 
(r: >>u:. An extension to the galvanostatic 
determination of diffusion coefficients has 
been developed by Weppner and Huggins 
(7), in which the charge passed during 
diffusion experiments serves also to change 
the composition of the sample slightly so that 
an alternation of such experiments with equil- 
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ibration periods allows determination of fi 
as a function of stoichiometry. The method 
has accordingly been called the galvanostatic 
intermittent titration technique, and has 
been used for systems such as L&,Sb (29). 
The composition can also be changed by 
coulometric titration in the case of the 
polarization method, but this is only possible 
when there is no material in direct contact 
with the bar to maintain a known activity of 
metal (unlike, for example, in the Hebb- 
Wagner experiment) and the technique has 
been criticized on this account (7). However, 
when both ionic and electronic voltage 
probes are present the metal activity in the 
bar can be simply measured from the voltage 
difference between the two sorts of probes 
and this criticism is no longer valid. 

The choice of method to be used for a 
particular mixed conductor depends mainly 

Appendix: List of Symbols 

;, 

Ji 
L 
Lj 

M 

R 

ti 

T 

Activity of species i 
Absolute mobility of i with 
respect to flows of i 
Concentration of i 
Chemical (or ambipolar) 
diffusion coefficient 
Electron 
Cell emf 
The Faraday 
Current density of species i 
Subscripts for generalized 
components 
Molar flux of i 
Length of bar specimen 
Phenomenological coefficient in 
flux equations 
Formula weight of the mixed 
conductor 
Molar gas constant 
Time 
Transport number of species i 
Absolute temperature 

on whether the most convenient electrolyte 
is liquid or solid, whether it is practical to 
machine a bar-shaped sample, and how large 
the chemical diffusion coefficient is expected 
to be. 

Automatic Control of Experiments 

Because of the time-consuming nature of 
the chemical diffusion coefficient deter- 
minations and the coulometric titrations 
some sort of automatic control is highly 
desirable. This need only be a relatively 
simple data logger or chart recorder to 
record variation of voltages with time, but 
with the recent introduction of cheap micro- 
computers complete automatic control of 
sequences of experiments has become 
possible at reasonable cost. This will form the 
subject of another paper. 

AK 

V 

Wi 

W 

>, Y,Z 

z 

zi 

AZ 
Pi 

I& 

Q 

flij 

7 

Voltage difference between 
probes reversible to i 
Id V, - Av,( for any voltage 
probes 
Thermodynamic factor for single 
species i (d In ai/d In ci) 
Overall thermodynamic factor 
xi Wi/ZfCi 

Deviation from stoichiometry 
Voltage differences measured in a 
four-point experiment 
Distance coordinate along direc- 
tion of diffusion 
Number of charges carried by 
species i 
Voltage probe spacing 
Chemical potential of species i 
Electrochemical potential of 
species i 
Electrostatic potential 
Conductivity coefficient 
Characteristic time of voltage 
probe transients 
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